The formula for the union of two events is:
\( P(A \cup B) = P(A) + P(B) - P(A \cap B) \).
The conditional probability \( P(A \mid B) \) is related to \( P(A \cap B) \) as:
\( P(A \cap B) = P(A \mid B) \cdot P(B) \).
Substitute the given values:
\( P(A \cap B) = (0.6)(0.8) = 0.48 \).
Now calculate \( P(A \cup B) \):
\( P(A \cup B) = 0.4 + 0.8 - 0.48 = 0.72 \).
Thus, the probability \( P(A \cup B) \) is 0.72.
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |