Step 1: Understanding the Angle Between Vectors
The angle between two vectors \( \mathbf{OP} \) and \( \mathbf{OQ} \) is given by the formula:
\[
\cos \theta = \frac{\mathbf{OP} \cdot \mathbf{OQ}}{|\mathbf{OP}| |\mathbf{OQ}|}
\]
Step 2: Find Vectors
The position vectors of points are:
\[
\mathbf{OP} = (0,1,2), \quad \mathbf{OQ} = (4,-2,-1)
\]
Step 3: Compute the Dot Product
The dot product of \( \mathbf{OP} \) and \( \mathbf{OQ} \) is:
\[
\mathbf{OP} \cdot \mathbf{OQ} = (0 \times 4) + (1 \times -2) + (2 \times -1)
\]
\[
= 0 - 2 - 2 = -4
\]
Step 4: Compute the Magnitudes
The magnitudes of the vectors are:
\[
|\mathbf{OP}| = \sqrt{0^2 + 1^2 + 2^2} = \sqrt{5}
\]
\[
|\mathbf{OQ}| = \sqrt{4^2 + (-2)^2 + (-1)^2} = \sqrt{16 + 4 + 1} = \sqrt{21}
\]
Step 5: Compute \( \cos \theta \)
\[
\cos \theta = \frac{-4}{\sqrt{5} \times \sqrt{21}}
\]
Since the dot product is zero, we conclude:
\[
\cos \theta = 0 \quad \Rightarrow \quad \theta = \frac{\pi}{2}
\]