We are given the quadratic equation:
\( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \)
One root is given as \( x = 1 \). Let the other root be \( \alpha \).
By Vieta's formulas, the sum of the roots is given by:
\( 1 + \alpha = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2} \)
\( 1 + \alpha = -\frac{b(c-a)}{a(b-c)} \)
Solving for \( \alpha \):
\( \alpha = -\frac{b(c-a)}{a(b-c)} - 1 \)
\( \alpha = \frac{-b(c-a) - a(b-c)}{a(b-c)} \)
\( \alpha = \frac{-b(c-a) - a(b-c)}{a(b-c)} \)
\( \alpha = \frac{-bc + ab - ab + ac}{a(b-c)} \)
\( \alpha = \frac{ac - bc}{a(b-c)} \)
\( \alpha = \frac{c(a-b)}{a(b-c)} \)
Thus, the other root is: \( \frac{c(a-b)}{a(b-c)} \).