Question:

If one root of the quadratic equation a(bc)x2+b(ca)x+c(ab)=0a(b-c)x^2+b(c-a)x+c(a-b)=0 is 1, then the other root is

Updated On: Apr 4, 2025
  • b(ca)a(bc)\frac{b(c-a)}{a(b-c)}
  • a(bc)c(ab)\frac{a(b-c)}{c(a-b)}
  • a(bc)b(ca)\frac{a(b-c)}{b(c-a)}
  • c(ab)a(bc)\frac{c(a-b)}{a(b-c)}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given the quadratic equation:

a(bc)x2+b(ca)x+c(ab)=0 a(b - c)x^2 + b(c - a)x + c(a - b) = 0  

One root is given as x=1 x = 1 . Let the other root be α \alpha .

By Vieta's formulas, the sum of the roots is given by:

1+α=coefficient of xcoefficient of x2 1 + \alpha = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2}

1+α=b(ca)a(bc) 1 + \alpha = -\frac{b(c-a)}{a(b-c)}

Solving for α \alpha :

α=b(ca)a(bc)1 \alpha = -\frac{b(c-a)}{a(b-c)} - 1

α=b(ca)a(bc)a(bc) \alpha = \frac{-b(c-a) - a(b-c)}{a(b-c)}

α=b(ca)a(bc)a(bc) \alpha = \frac{-b(c-a) - a(b-c)}{a(b-c)}

α=bc+abab+aca(bc) \alpha = \frac{-bc + ab - ab + ac}{a(b-c)}

α=acbca(bc) \alpha = \frac{ac - bc}{a(b-c)}

α=c(ab)a(bc) \alpha = \frac{c(a-b)}{a(b-c)}

Thus, the other root is: c(ab)a(bc) \frac{c(a-b)}{a(b-c)} .

Was this answer helpful?
0
0

Top Questions on Quadratic Equations

View More Questions