We are given the quadratic equation:
a(b−c)x2+b(c−a)x+c(a−b)=0
One root is given as x=1. Let the other root be α.
By Vieta's formulas, the sum of the roots is given by:
1+α=−coefficient of x2coefficient of x
1+α=−a(b−c)b(c−a)
Solving for α:
α=−a(b−c)b(c−a)−1
α=a(b−c)−b(c−a)−a(b−c)
α=a(b−c)−b(c−a)−a(b−c)
α=a(b−c)−bc+ab−ab+ac
α=a(b−c)ac−bc
α=a(b−c)c(a−b)
Thus, the other root is: a(b−c)c(a−b).