Step 1: Use the equation of the parabola.
The equation of the parabola is: \[ x^2 = 4ay \] where \( a \) is the focal length. The point \( Q \) lies on the parabola, and the coordinates of \( Q \) are \( (x, y) \).
Step 2: Find the coordinates of point \( C \).
The point \( C \) divides the line segment \( OQ \) in the ratio 2:3. Using the section formula, we find the coordinates of \( C \). The section formula gives the point dividing the line in the ratio \( m:n \) as: \[ C = \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right) \]
Step 3: Apply the section formula.
We apply this formula to find the coordinates of point \( C \) and substitute the values.
Step 4: Find the equation of the chord.
Using the mid-point formula and simplifying, we obtain the equation of the chord of the parabola as: \[ 5x - 4y + 3 = 0 \]

Given below are two statements:
Statement I: Arginine and Tryptophan are essential amino acids.
Statement II: Glycine does not have any chiral carbon.
In the light of the above statements, which is the correct option?
$A$ and $B$ are identical point masses. $A$ is released as shown in the diagram at an angle $60^\circ$ from the vertical. Find $R$ if $B$ is able to reach point $C$ after elastic impact. 
