To find the angle between the face \(OAB\) and the edge \(BC\), compute the angle between the vector \(\vec{BC}\) and the normal vector to the plane formed by points \(O, A, B\).
Step 1: Construct vectors:
\[
\vec{OA} = A - O = (1,2,1), \quad \vec{OB} = B - O = (2,1,3)
\]
Step 2: Compute the normal vector to triangle OAB:
\[
\vec{n} = \vec{OA} \times \vec{OB} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
1 & 2 & 1
2 & 1 & 3
\end{vmatrix}
= (6 - 1)\hat{i} - (3 - 2)\hat{j} + (1 - 4)\hat{k} = 5\hat{i} - \hat{j} - 3\hat{k}
\]
Step 3: Vector \(BC\):
\[
\vec{BC} = C - B = (-1,1,2) - (2,1,3) = (-3, 0, -1)
\]
Step 4: Use the angle formula between vector and a plane:
\[
\sin \theta = \dfrac{|\vec{n} \cdot \vec{BC}|}{\|\vec{n}\| \cdot \|\vec{BC}\|}
\]
\[
\vec{n} \cdot \vec{BC} = 5(-3) + (-1)(0) + (-3)(-1) = -15 + 0 + 3 = -12 \Rightarrow |\vec{n} \cdot \vec{BC}| = 12
\]
\[
\|\vec{n}\| = \sqrt{25 + 1 + 9} = \sqrt{35}, \quad \|\vec{BC}\| = \sqrt{9 + 0 + 1} = \sqrt{10}
\]
\[
\Rightarrow \sin \theta = \dfrac{12}{\sqrt{350}} = \dfrac{6\sqrt{2}}{5\sqrt{7}} \Rightarrow \theta = \sin^{-1} \left( \dfrac{6\sqrt{2}}{5\sqrt{7}} \right)
\]