If \( {}^n P_r = {}^{n-1}P_r + x \cdot {}^{n-1}P_{r-1} \quad \forall n,r \in N \text{ and } r \le n \), then x =
.
Show Hint
Definition of permutation: \( {}^n P_r = \frac{n!}{(n-r)!} \).
Recurrence relation for permutations: \( {}^n P_r = {}^{n-1}P_r + r \cdot {}^{n-1}P_{r-1} \).
Another common one is \( {}^n P_r = n \cdot {}^{n-1}P_{r-1} \).
Substitute the factorial definitions and simplify algebraically.
We know the formula for permutations: \( {}^n P_r = \frac{n!}{(n-r)!} \).
The given recurrence relation is \( {}^n P_r = {}^{n-1}P_r + x \cdot {}^{n-1}P_{r-1} \).
Let's expand the terms:
\( {}^{n-1}P_r = \frac{(n-1)!}{((n-1)-r)!} = \frac{(n-1)!}{(n-r-1)!} \).
\( {}^{n-1}P_{r-1} = \frac{(n-1)!}{((n-1)-(r-1))!} = \frac{(n-1)!}{(n-1-r+1)!} = \frac{(n-1)!}{(n-r)!} \).
Substitute these into the equation:
\( \frac{n!}{(n-r)!} = \frac{(n-1)!}{(n-r-1)!} + x \cdot \frac{(n-1)!}{(n-r)!} \)
We can write \(n! = n \cdot (n-1)!\) and \((n-r)! = (n-r) \cdot (n-r-1)!\).
\( \frac{n \cdot (n-1)!}{(n-r)(n-r-1)!} = \frac{(n-1)!}{(n-r-1)!} + x \cdot \frac{(n-1)!}{(n-r)(n-r-1)!} \)
Assuming \((n-1)! \neq 0\) and \((n-r-1)! \neq 0\), divide by \(\frac{(n-1)!}{(n-r-1)!}\):
\( \frac{n}{n-r} = 1 + x \cdot \frac{1}{n-r} \)
Multiply by \((n-r)\):
\( n = (n-r) + x \)
\( n = n - r + x \)
\( 0 = -r + x \)
\( x = r \).
This matches option (d).
This recurrence relation \( {}^n P_r = {}^{n-1}P_r + r \cdot {}^{n-1}P_{r-1} \) is a known identity for permutations.
\[ \boxed{r} \]