Question:

If \( \mathbf{a} = 2i - 2j + k \) and \( \mathbf{c} = -i + 2k \), then \( \mathbf{a} \times \mathbf{c} \) is equal to:

Show Hint

To calculate the cross product, use the determinant method with unit vectors \( \mathbf{i}, \mathbf{j}, \mathbf{k} \) in the first row.
Updated On: Jan 14, 2026
  • \( 2\sqrt{5} \mathbf{i} + 5 \mathbf{j} + \sqrt{5} \mathbf{k} \)
  • \( 2\mathbf{i} - 2\mathbf{j} + \sqrt{5} \mathbf{k} \)
  • \( 5 \mathbf{i} + \sqrt{5} \mathbf{j} + 2\mathbf{k} \)
  • \( \sqrt{5} \mathbf{i} + 2 \mathbf{j} + \mathbf{k} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Using the cross-product formula, \[ \mathbf{a} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -2 & 1 \\ -1 & 0 & 2 \end{vmatrix} \] we get the result \( 2\mathbf{i} - 2\mathbf{j} + \sqrt{5} \mathbf{k} \).
Was this answer helpful?
0
0