Let's assign code values to letters using the mapping in "MACHINE":
\[
\begin{aligned}
\text{M} &\rightarrow 19,\quad \text{A} \rightarrow 7,\quad \text{C} \rightarrow 9,\quad \text{H} \rightarrow 14, \\
\text{I} &\rightarrow 15,\quad \text{N} \rightarrow 20,\quad \text{E} \rightarrow 11
\end{aligned}
\]
Now encode D-A-N-G-E-R using this same logic:
D = M-3 = 19-3 = 16 → not matching any option, so pattern must be letter position shift.
Instead, calculate backward difference:
\[
\text{M} = 13 \rightarrow 19 = +6,\quad \text{A} = 1 \rightarrow 7 = +6,\quad \text{C} = 3 \rightarrow 9 = +6,\ \text{etc.}
\]
Pattern: Each letter is encoded as letter position + 6. Apply to DANGER:
\[
\begin{aligned}
D\ (4) + 6 &= 10 \\
A\ (1) + 6 &= 7 \\
N\ (14) + 6 &= 20 \\
G\ (7) + 6 &= 13 \\
E\ (5) + 6 &= 11 \\
R\ (18) + 6 &= 24
\end{aligned}
\]
Code = 10-7-20-13-11-24