Step 1: Use logarithm property
\(\log_{4} m + \log_{4} n = \log_{4}(mn)\).
Step 2: Rewrite equation
\(\log_{4}(mn) = \log_{2}(m+n)\).
Step 3: Convert bases
\(\log_{4}(mn) = \frac{\log_{2}(mn)}{\log_{2} 4} = \frac{1}{2}\log_{2}(mn)\).
So equation becomes: \[ \frac{1}{2}\log_{2}(mn) = \log_{2}(m+n). \]
Step 4: Eliminate logs
Multiply both sides by 2: \[ \log_{2}(mn) = 2\log_{2}(m+n). \]
This simplifies to: \[ \log_{2}(mn) = \log_{2}\big((m+n)^2\big). \]
Step 5: Compare arguments
\[ mn = (m+n)^2. \]
Step 6: Expand and analyze
\((m+n)^2 = m^2 + 2mn + n^2\). So: \[ mn = m^2 + 2mn + n^2. \] \[ 0 = m^2 + n^2 + mn. \]
Step 7: Check feasibility
Since \(m, n > 0\), each of \(m^2, n^2, mn\) is positive. Thus, \(m^2 + n^2 + mn > 0\), and cannot equal 0.
Final Conclusion:
No positive real numbers \(m, n\) can satisfy the given equation. \[ \boxed{\text{No solution exists.}} \]