Question:

If \( \left( x + \frac{1}{x} \right) = \sqrt{3} \), then the value of \( \left( x^3 + \frac{1}{x^3} \right) \) will be:

Show Hint

Use the identity \( \left( x + \frac{1}{x} \right)^3 = x^3 + \frac{1}{x^3} + 3 \left( x + \frac{1}{x} \right) \) to find expressions involving cubes.
Updated On: Apr 25, 2025
  • \( 3(\sqrt{3} + 1) \)
  • \( \sqrt{3} \)
  • 0
  • \( 3(\sqrt{3} - 1) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We are given that: \[ x + \frac{1}{x} = \sqrt{3} \] To find \( x^3 + \frac{1}{x^3} \), we use the identity: \[ \left( x + \frac{1}{x} \right)^3 = x^3 + \frac{1}{x^3} + 3 \left( x + \frac{1}{x} \right) \] Substitute \( x + \frac{1}{x} = \sqrt{3} \) into the identity: \[ \left( \sqrt{3} \right)^3 = x^3 + \frac{1}{x^3} + 3 \times \sqrt{3} \] \[ 3\sqrt{3} = x^3 + \frac{1}{x^3} + 3\sqrt{3} \] Solving for \( x^3 + \frac{1}{x^3} \): \[ x^3 + \frac{1}{x^3} = 3(\sqrt{3} + 1) \] Thus, the correct answer is \( 3(\sqrt{3} + 1) \).
Was this answer helpful?
0
0