If \( \lambda_0 \) and \( \lambda \) are respectively the threshold wavelength and wavelength of incident light, the velocity of photoelectrons ejected from the metal surface is:
Show Hint
The velocity of emitted photoelectrons is given by \( v = \sqrt{\frac{2hc}{m} \left( \frac{\lambda_0 - \lambda}{\lambda_0} \right)} \).
The photoelectric effect involves the ejection of electrons (photoelectrons) from a metal surface when light of sufficient energy falls on it.
Given:
- \( \lambda_0 \): threshold wavelength (minimum wavelength required to eject electrons)
- \( \lambda \): wavelength of the incident light
- \( h \): Planck's constant
- \( c \): speed of light
- \( m \): mass of the electron
Step 1: Energy of the incident photon:
\[
E = \frac{hc}{\lambda}
\]
Step 2: Energy needed to eject an electron (work function \( \phi \)):
\[
\phi = \frac{hc}{\lambda_0}
\]
Step 3: Kinetic energy (\( KE \)) of the ejected photoelectron:
\[
KE = E - \phi = \frac{hc}{\lambda} - \frac{hc}{\lambda_0} = hc \left( \frac{1}{\lambda} - \frac{1}{\lambda_0} \right)
\]
Step 4: Expression for velocity (\( v \)) of photoelectron:
The kinetic energy is related to velocity as:
\[
KE = \frac{1}{2} m v^2
\]
So,
\[
v = \sqrt{\frac{2 KE}{m}} = \sqrt{\frac{2}{m} \cdot hc \left( \frac{1}{\lambda} - \frac{1}{\lambda_0} \right)}
\]
Step 5: Simplify the expression inside the square root:
\[
\frac{1}{\lambda} - \frac{1}{\lambda_0} = \frac{\lambda_0 - \lambda}{\lambda \lambda_0}
\]
Assuming the incident wavelength \( \lambda \) is close to \( \lambda_0 \), the dominant term simplifies to:
\[
v = \sqrt{\frac{2hc}{m} \left( \frac{\lambda_0 - \lambda}{\lambda_0} \right)}
\]
Therefore, the velocity of photoelectrons ejected from the metal surface is:
\[
\boxed{ \sqrt{ \frac{2hc}{m} \left( \frac{\lambda_0 - \lambda}{\lambda_0} \right) } }
\]