Question:

If \( \lambda_0 \) and \( \lambda \) are respectively the threshold wavelength and wavelength of incident light, the velocity of photoelectrons ejected from the metal surface is:

Show Hint

The velocity of emitted photoelectrons is given by \( v = \sqrt{\frac{2hc}{m} \left( \frac{\lambda_0 - \lambda}{\lambda_0} \right)} \).
Updated On: Mar 24, 2025
  • \( \sqrt{\frac{2h}{m} (\lambda_0 - \lambda)} \)
  • \( \sqrt{\frac{2hc}{m} \left( \frac{\lambda_0 - \lambda}{\lambda_0} \right)} \)
  • \( \sqrt{\frac{2hc}{m} (\lambda_0 - \lambda)} \)
  • \( \sqrt{\frac{2h}{m} \left( \frac{1}{\lambda_0} - \frac{1}{\lambda} \right)} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Apply Einstein’s Photoelectric Equation \[ \frac{1}{2} m v^2 = \frac{hc}{\lambda} - \frac{hc}{\lambda_0} \] Step 2: Compute Electron Velocity \[ v = \sqrt{\frac{2}{m} \left( \frac{hc}{\lambda} - \frac{hc}{\lambda_0} \right)} \] \[ = \sqrt{\frac{2hc}{m} \left( \frac{\lambda_0 - \lambda}{\lambda_0 \lambda} \right)} \] Thus, the correct answer is \( \sqrt{\frac{2hc}{m} \left( \frac{\lambda_0 - \lambda}{\lambda_0} \right)} \).
Was this answer helpful?
0
0

Top Questions on Photoelectric Effect

View More Questions