Step 1: We are given that \(10^k\) divides \(9^{11} + 11^9\).
So, we must find the highest power of 10 that divides \(9^{11} + 11^9\).
Step 2: Note that:
\[
10^k = 2^k \cdot 5^k
\]
So, we need to find the highest power of both 2 and 5 that divide \(9^{11} + 11^9\).
Step 3: Check divisibility by 2 and 5:
Let’s calculate \(9^{11} + 11^9 \mod 2\):
\[
9^{11} \equiv 1^{11} \equiv 1 \mod 2 \\
11^9 \equiv 1^9 \equiv 1 \mod 2 \\
\Rightarrow 9^{11} + 11^9 \equiv 1 + 1 = 0 \mod 2
\]
So, divisible by 2.
Step 4: Check modulo 4:
\[
9 \equiv 1 \mod 4 \Rightarrow 9^{11} \equiv 1^{11} = 1 \mod 4 \\
11 \equiv 3 \mod 4 \Rightarrow 11^2 \equiv 1 \Rightarrow 11^8 \equiv 1 \Rightarrow 11^9 \equiv 3 \mod 4 \\
\Rightarrow 9^{11} + 11^9 \equiv 1 + 3 = 0 \mod 4
\]
So, divisible by \(4 = 2^2\).
Step 5: Check divisibility by 5:
Since \(9 \equiv -1 \mod 5\), \(11 \equiv 1 \mod 5\):
\[
9^{11} \equiv (-1)^{11} \equiv -1 \mod 5 \\
11^9 \equiv 1^9 \equiv 1 \mod 5 \\
\Rightarrow 9^{11} + 11^9 \equiv -1 + 1 = 0 \mod 5
\]
So divisible by 5.
Step 6: Check divisibility by 25:
Now try modulo 25:
\[
9^2 = 81, 9^4 = 6561, 9^8 = 43046721, \text{but let's look for patterns:}
\]
Euler’s theorem: Since \(\phi(25) = 20\), \(a^{20} \equiv 1 \mod 25\) if \(\gcd(a,25)=1\)
We can use successive powers or verify:
\[
9^5 = 59049 \Rightarrow 59049 \mod 25 = -1 \Rightarrow 9^{10} \equiv 1 \mod 25 \Rightarrow 9^{11} \equiv 9 \mod 25 \\
11^2 = 121, 11^4 = 14641, 11^8 = 214358881, \text{find } 11^9 \mod 25: \\
\text{Since } 11^2 = 121 \equiv 121 \mod 25 = 121 - 100 = 21 \\
\Rightarrow 11^2 \equiv 21 \mod 25 \\
11^4 = (11^2)^2 \equiv 21^2 = 441 \Rightarrow 441 \mod 25 = 441 - 425 = 16 \\
11^8 \equiv 16 \Rightarrow 11^9 = 11^8 \cdot 11 \equiv 16 \cdot 11 = 176 \Rightarrow 176 \mod 25 = 1
\]
So:
\[
9^{11} + 11^9 \equiv 9 + 1 = 10 \mod 25 \Rightarrow \text{Not divisible by }25
\]
Hence, the maximum power of 5 is \(5^1\), and of 2 is \(2^2\).
\[
\Rightarrow \text{Greatest }k \text{ such that } 10^k \mid 9^{11} + 11^9 \text{ is } \boxed{2}
\]