To find the value of \( \sin \theta \) for the angle \( \theta \) between the vectors \(\mathbf{A} = 2 \hat{i} - 2 \hat{j} + 4 \hat{k}\) and \(\mathbf{B} = 3 \hat{i} + \hat{j} + 2 \hat{k}\), we use the formula: \(\cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|}\).
Step 1: Calculate the dot product \(\mathbf{A} \cdot \mathbf{B}\).
\[ \mathbf{A} \cdot \mathbf{B} = (2)(3) + (-2)(1) + (4)(2) \]
\[ = 6 - 2 + 8 \]
\[ = 12 \]
Step 2: Calculate the magnitudes of \(\mathbf{A}\) and \(\mathbf{B}\).
\[ |\mathbf{A}| = \sqrt{(2)^2 + (-2)^2 + (4)^2} \]
\[ = \sqrt{4 + 4 + 16} \]
\[ = \sqrt{24} = 2\sqrt{6} \]
\[ |\mathbf{B}| = \sqrt{(3)^2 + (1)^2 + (2)^2} \]
\[ = \sqrt{9 + 1 + 4} \]
\[ = \sqrt{14} \]
Step 3: Substitute values into the cosine formula and solve for \(\sin \theta\).
\[ \cos \theta = \frac{12}{2\sqrt{6} \cdot \sqrt{14}} \]
\[ = \frac{12}{2\sqrt{84}} \]
\[ = \frac{6}{\sqrt{84}} \]
To find \(\sin \theta\), use the identity:
\[ \sin \theta = \sqrt{1 - \cos^2 \theta} \]
\[ \sin \theta = \sqrt{1 - \left(\frac{6}{\sqrt{84}}\right)^2} \]
\[ = \sqrt{1 - \frac{36}{84}} \]
\[ = \sqrt{\frac{48}{84}} \]
\[ = \sqrt{\frac{4}{7}} \]
\[ = \frac{2}{\sqrt{7}} \]
Therefore, the value of \(\sin \theta\) is \(\frac{2}{\sqrt{7}}\).