Step 1: Simplify trigonometric part.
\[
\frac{2-\sin2x}{1-\cos2x}
\]
Use identities:
\[
1-\cos2x=2\sin^2x
\]
\[
\sin2x=2\sin x\cos x
\]
So:
\[
\frac{2-2\sin x\cos x}{2\sin^2x}
=\frac{1-\sin x\cos x}{\sin^2x}
\]
\[
=\csc^2x-\cot x
\]
Step 2: Integral becomes.
\[
\int (\csc^2x-\cot x)e^x dx
\]
Step 3: Observe derivative form.
Differentiate \(-e^x\cot x\):
\[
\frac{d}{dx}(-e^x\cot x)
=-e^x\cot x + e^x\csc^2x
=e^x(\csc^2x-\cot x)
\]
So integral equals:
\[
-e^x\cot x + c
\]
Final Answer:
\[
\boxed{-e^x\cot x + c}
\]