If \[ \int \frac{2}{1+\sin x} dx = 2 \log |A(x) - B(x)| + C \] and \( 0 \leq x \leq \frac{\pi}{2} \), then \( B(\pi/4) = \) ?
Step 1: Solve the Integral
We solve: \[ I = \int \frac{2}{1+\sin x} dx. \] Using the standard substitution: \[ I = \int \frac{2(1-\sin x)}{(1+\sin x)(1-\sin x)} dx. \] \[ = \int \frac{2(1-\sin x)}{\cos^2 x} dx. \] \[ = \int \frac{2}{\cos^2 x} dx - \int \frac{2\sin x}{\cos^2 x} dx. \] Since, \[ \int \sec^2 x dx = \tan x \quad \text{and} \quad \int \frac{\sin x}{\cos^2 x} dx = -\frac{1}{\cos x}. \] We get, \[ I = 2 \tan x + 2 \sec x + C. \] Thus, \[ I = 2 \log |A(x) - B(x)| + C. \]
Step 2: Find \( B(\pi/4) \)
Substituting \( x = \frac{\pi}{4} \): \[ B\left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{3} + 2\sqrt{2}}. \]
Step 3: Conclusion
Thus, the value of \( B(\pi/4) \) is: \[ \boxed{\frac{1}{\sqrt{3} + 2\sqrt{2}}}. \]
The integral $ \int_0^1 \frac{1}{2 + \sqrt{2e}} \, dx $ is:
Evaluate the integral: \[ \int \frac{3x^9 + 7x^8}{(x^2 + 2x + 5x^9)^2} \,dx= \]
The range of the real valued function \( f(x) =\) \(\sin^{-1} \left( \frac{1 + x^2}{2x} \right)\) \(+ \cos^{-1} \left( \frac{2x}{1 + x^2} \right)\) is:
The value of shunt resistance that allows only 10% of the main current through the galvanometer of resistance \( 99 \Omega \) is:
A line \( L \) passing through the point \( (2,0) \) makes an angle \( 60^\circ \) with the line \( 2x - y + 3 = 0 \). If \( L \) makes an acute angle with the positive X-axis in the anticlockwise direction, then the Y-intercept of the line \( L \) is?