If \[ \int \frac{2}{1+\sin x} dx = 2 \log |A(x) - B(x)| + C \] and \( 0 \leq x \leq \frac{\pi}{2} \), then \( B(\pi/4) = \) ?
Step 1: Solve the Integral
We solve: \[ I = \int \frac{2}{1+\sin x} dx. \] Using the standard substitution: \[ I = \int \frac{2(1-\sin x)}{(1+\sin x)(1-\sin x)} dx. \] \[ = \int \frac{2(1-\sin x)}{\cos^2 x} dx. \] \[ = \int \frac{2}{\cos^2 x} dx - \int \frac{2\sin x}{\cos^2 x} dx. \] Since, \[ \int \sec^2 x dx = \tan x \quad \text{and} \quad \int \frac{\sin x}{\cos^2 x} dx = -\frac{1}{\cos x}. \] We get, \[ I = 2 \tan x + 2 \sec x + C. \] Thus, \[ I = 2 \log |A(x) - B(x)| + C. \]
Step 2: Find \( B(\pi/4) \)
Substituting \( x = \frac{\pi}{4} \): \[ B\left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{3} + 2\sqrt{2}}. \]
Step 3: Conclusion
Thus, the value of \( B(\pi/4) \) is: \[ \boxed{\frac{1}{\sqrt{3} + 2\sqrt{2}}}. \]
Find the area of the region (in square units) enclosed by the curves: \[ y^2 = 8(x+2), \quad y^2 = 4(1-x) \] and the Y-axis.
Evaluate the integral: \[ I = \int_{\frac{1}{\sqrt[5]{32}}}^{\frac{1}{\sqrt[5]{31}}} \frac{1}{\sqrt[5]{x^{30} + x^{25}}} dx. \]
Evaluate the integral: \[ I = \int_{-3}^{3} |2 - x| dx. \]
Evaluate the integral: \[ I = \int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} dx. \]
If \[ \int \frac{3}{2\cos 3x \sqrt{2} \sin 2x} dx = \frac{3}{2} (\tan x)^{\beta} + \frac{3}{10} (\tan x)^4 + C \] then \( A = \) ?