Question:

If $\int_0^\pi (\sin^3 x) e^{-\sin^2 x} dx = \alpha - \frac{\beta}{e} \int_0^1 \sqrt{t} e^t dt$, then $\alpha+\beta$ is equal to ________.

Show Hint

When an integral cannot be solved in elementary terms, but the question relates it to another unsolved integral, the key is often to use substitution and integration by parts to transform one integral's form into the other.
Updated On: Jan 12, 2026
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 5

Solution and Explanation

Let \[ I=\int_0^\pi \sin^3 x\,e^{-\sin^2 x}\,dx \] Rewrite: \[ \sin^3 x = \sin^2 x \sin x \] Substitute: \[ u=\cos x \Rightarrow du=-\sin x\,dx \] When $x=0,\ u=1$ and when $x=\pi,\ u=-1$. \[ I=\int_1^{-1}(1-u^2)e^{-(1-u^2)}(-du) =\frac{1}{e}\int_{-1}^1(1-u^2)e^{u^2}du \] The integrand is even, so: \[ I=\frac{2}{e}\int_0^1(1-u^2)e^{u^2}du =\frac{2}{e}\left(\int_0^1 e^{u^2}du-\int_0^1 u^2e^{u^2}du\right) \] Evaluate $\displaystyle \int_0^1 u^2e^{u^2}du$ using integration by parts: Let \[ \int_0^1 u^2e^{u^2}du=\left[\frac{u}{2}e^{u^2}\right]_0^1-\frac12\int_0^1 e^{u^2}du =\frac{e}{2}-\frac12\int_0^1 e^{u^2}du \] Substitute back: \[ I=\frac{2}{e}\left(\frac32\int_0^1 e^{u^2}du-\frac{e}{2}\right) =\frac{3}{e}\int_0^1 e^{u^2}du-1 \] Now relate to the given integral: \[ \int_0^1\sqrt{t}\,e^t dt \] Let $t=u^2$, then $dt=2u\,du$: \[ \int_0^1\sqrt{t}\,e^t dt =2\int_0^1 u^2e^{u^2}du \] From earlier, \[ \int_0^1 u^2e^{u^2}du=\frac{e}{2}-\frac12\int_0^1 e^{u^2}du \] Hence, \[ \int_0^1 e^{u^2}du=e-\int_0^1\sqrt{t}\,e^t dt \] Substitute into $I$: \[ I=\frac{3}{e}\left(e-\int_0^1\sqrt{t}\,e^t dt\right)-1 =2-\frac{3}{e}\int_0^1\sqrt{t}\,e^t dt \] Comparing with \[ I=\alpha-\frac{\beta}{e}\int_0^1\sqrt{t}\,e^t dt \] we get: \[ \alpha=2,\quad \beta=3 \] \[ \boxed{\alpha+\beta=5} \]
Was this answer helpful?
0
0