Let
\[
I=\int_0^\pi \sin^3 x\,e^{-\sin^2 x}\,dx
\]
Rewrite:
\[
\sin^3 x = \sin^2 x \sin x
\]
Substitute:
\[
u=\cos x \Rightarrow du=-\sin x\,dx
\]
When $x=0,\ u=1$ and when $x=\pi,\ u=-1$.
\[
I=\int_1^{-1}(1-u^2)e^{-(1-u^2)}(-du)
=\frac{1}{e}\int_{-1}^1(1-u^2)e^{u^2}du
\]
The integrand is even, so:
\[
I=\frac{2}{e}\int_0^1(1-u^2)e^{u^2}du
=\frac{2}{e}\left(\int_0^1 e^{u^2}du-\int_0^1 u^2e^{u^2}du\right)
\]
Evaluate $\displaystyle \int_0^1 u^2e^{u^2}du$ using integration by parts:
Let
\[
\int_0^1 u^2e^{u^2}du=\left[\frac{u}{2}e^{u^2}\right]_0^1-\frac12\int_0^1 e^{u^2}du
=\frac{e}{2}-\frac12\int_0^1 e^{u^2}du
\]
Substitute back:
\[
I=\frac{2}{e}\left(\frac32\int_0^1 e^{u^2}du-\frac{e}{2}\right)
=\frac{3}{e}\int_0^1 e^{u^2}du-1
\]
Now relate to the given integral:
\[
\int_0^1\sqrt{t}\,e^t dt
\]
Let $t=u^2$, then $dt=2u\,du$:
\[
\int_0^1\sqrt{t}\,e^t dt
=2\int_0^1 u^2e^{u^2}du
\]
From earlier,
\[
\int_0^1 u^2e^{u^2}du=\frac{e}{2}-\frac12\int_0^1 e^{u^2}du
\]
Hence,
\[
\int_0^1 e^{u^2}du=e-\int_0^1\sqrt{t}\,e^t dt
\]
Substitute into $I$:
\[
I=\frac{3}{e}\left(e-\int_0^1\sqrt{t}\,e^t dt\right)-1
=2-\frac{3}{e}\int_0^1\sqrt{t}\,e^t dt
\]
Comparing with
\[
I=\alpha-\frac{\beta}{e}\int_0^1\sqrt{t}\,e^t dt
\]
we get:
\[
\alpha=2,\quad \beta=3
\]
\[
\boxed{\alpha+\beta=5}
\]