The relation between kinetic energy $K$, and momentum $p$, is
$p=\sqrt{2 m K}$
where, $m$ is mass.
Given, $p_{1} =p, p_{2}=p_{1}+50 \% $ of $ p_{1} $
$ p_{2}=p_{1}+\frac{p_{1}}{2}=\frac{3}{2} p_{1}=1.5 p_{1} $
$\therefore \frac{K_{1}}{K_{2}}=\frac{p_{1}^{2}}{p_{2}^{2}} $
$\Rightarrow K_{2} =\frac{p_{2}^{2}}{p_{1}^{2}} K_{1} $
$\Rightarrow K_{2} =\frac{(1.5)^{2}}{1} \times K=2.25 K $
$\therefore$ Change in K E$=2.25-1 $
$=1.25=125 \%$