Step 1: Use reduction formula.
For \(\int \sin^n x\,dx\):
\[
I_n = -\frac{\sin^{n-1}x\cos x}{n} + \frac{n-1}{n}I_{n-2}
\]
Step 2: Multiply by \(n\).
\[
nI_n = -\sin^{n-1}x\cos x + (n-1)I_{n-2}
\]
Step 3: Rearrange to match required form.
\[
nI_n-(n-1)I_{n-2}=-\sin^{n-1}x\cos x
\]
Thus:
\[
nI_n-(n-1)I_{n-2}=-\sin^{n-1}x\cos x
\]
Final Answer:
\[
\boxed{-\sin^{n-1}x\cos x}
\]