Question:

If \(I_n=\int \sin^n x\,dx\), then \(I_n-nI_{n-2}\) equals

Show Hint

Use the standard reduction formula for \(\int \sin^n x\,dx\). Rearranging gives the required identity instantly.
Updated On: Jan 3, 2026
  • \(\sin^{n-1}x\cos x\)
  • \(\cos^{n-1}x\sin x\)
  • \(-\sin^{n-1}x\cos x\)
  • \(-\cos^{n-1}x\sin x\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Use reduction formula.
For \(\int \sin^n x\,dx\):
\[ I_n = -\frac{\sin^{n-1}x\cos x}{n} + \frac{n-1}{n}I_{n-2} \]
Step 2: Multiply by \(n\).
\[ nI_n = -\sin^{n-1}x\cos x + (n-1)I_{n-2} \]
Step 3: Rearrange to match required form.
\[ nI_n-(n-1)I_{n-2}=-\sin^{n-1}x\cos x \]
Thus:
\[ nI_n-(n-1)I_{n-2}=-\sin^{n-1}x\cos x \]
Final Answer:
\[ \boxed{-\sin^{n-1}x\cos x} \]
Was this answer helpful?
0
0