Step 1: Understanding the Concept:
This is a problem involving a definite integral that can be solved elegantly using a specific property of definite integrals, often referred to as the "King's Rule".
Step 2: Key Formula or Approach:
We will use the property: \( \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx \).
Step 3: Detailed Proof:
Let the given integral be:
\[ I = \int_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} \, dx \quad \cdots (1) \]
Here, \( a = \frac{\pi}{6} \) and \( b = \frac{\pi}{3} \). Their sum is \( a+b = \frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi + 2\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \).
Applying the property \( \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx \), we get:
\[ I = \int_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan(\frac{\pi}{2} - x)}} \, dx \]
Using the trigonometric identity \( \tan(\frac{\pi}{2} - x) = \cot x \):
\[ I = \int_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot x}} \, dx \]
Rewrite \( \sqrt{\cot x} \) as \( \frac{1}{\sqrt{\tan x}} \):
\[ I = \int_{\pi/6}^{\pi/3} \frac{1}{1 + \frac{1}{\sqrt{\tan x}}} \, dx = \int_{\pi/6}^{\pi/3} \frac{1}{\frac{\sqrt{\tan x} + 1}{\sqrt{\tan x}}} \, dx \]
\[ I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\tan x}}{1 + \sqrt{\tan x}} \, dx \quad \cdots (2) \]
Now, we add equation (1) and equation (2):
\[ I + I = \int_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} \, dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\tan x}}{1 + \sqrt{\tan x}} \, dx \]
\[ 2I = \int_{\pi/6}^{\pi/3} \frac{1 + \sqrt{\tan x}}{1 + \sqrt{\tan x}} \, dx \]
\[ 2I = \int_{\pi/6}^{\pi/3} 1 \, dx \]
Evaluating the simple integral:
\[ 2I = [x]_{\pi/6}^{\pi/3} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{2\pi - \pi}{6} = \frac{\pi}{6} \]
Solving for I:
\[ I = \frac{\pi}{12} \]
Step 4: Final Answer:
We have successfully proven that \( I = \frac{\pi}{12} \).