Step 1: Substitute \(t = 1+x^3\).
\[
t = 1+x^3
\Rightarrow dt = 3x^2 dx
\Rightarrow x^2 dx = \frac{dt}{3}
\]
Step 2: Rewrite the integrand.
\[
I=\int \frac{x^5}{\sqrt{1+x^3}}dx
= \int \frac{x^3\cdot x^2}{\sqrt{t}}dx
\]
But \(x^3 = t-1\). So:
\[
I=\int \frac{(t-1)\cdot x^2}{\sqrt{t}}dx
= \int \frac{(t-1)}{\sqrt{t}} \cdot \frac{dt}{3}
\]
Step 3: Simplify.
\[
I=\frac{1}{3}\int \left(t^{\frac{1}{2}} - t^{-\frac{1}{2}}\right) dt
\]
Step 4: Integrate term by term.
\[
\int t^{\frac{1}{2}}dt = \frac{2}{3}t^{\frac{3}{2}}
\]
\[
\int t^{-\frac{1}{2}}dt = 2t^{\frac{1}{2}}
\]
So:
\[
I=\frac{1}{3}\left(\frac{2}{3}t^{\frac{3}{2}} - 2t^{\frac{1}{2}}\right)+C
\]
\[
I=\frac{2}{9}t^{\frac{3}{2}}-\frac{2}{3}t^{\frac{1}{2}}+C
\]
Step 5: Substitute back \(t=1+x^3\).
\[
I=\frac{2}{9}(1+x^3)^{\frac{3}{2}}-\frac{2}{3}(1+x^3)^{\frac{1}{2}}+C
\]
Final Answer:
\[
\boxed{\frac{2}{9}(1+x^3)^{\frac{3}{2}}-\frac{2}{3}(1+x^3)^{\frac{1}{2}}+C}
\]