First, find the derivative of the function \( g(x) = -\sqrt{25 - x^2} \) using the chain rule.
We have: \[ g'(x) = - \frac{d}{dx} \left( \sqrt{25 - x^2} \right) \] Using the chain rule: \[ g'(x) = - \frac{1}{2\sqrt{25 - x^2}} \cdot (-2x) = \frac{x}{\sqrt{25 - x^2}} \] Now, substitute \( x = 1 \): \[ g'(1) = \frac{1}{\sqrt{25 - 1^2}} = \frac{1}{\sqrt{24}} = \frac{1}{\sqrt{24}} \]