Question:

If \(\frac{x}{(b + c)(b + c - 2a)} = \frac{y}{(c - a)(c + a - 2b)} = \frac{z}{(a - b)(a + b - 2c)}\), then the value of \(x + y + z\) is:

Updated On: May 11, 2025
  • \(a + b + c\)
  • \(a^2 + b^2 + c^2\)
  • 0
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We are given the equation:
\(\frac{x}{(b+c)(b+c-2a)} = \frac{y}{(c-a)(c+a-2b)} = \frac{z}{(a-b)(a+b-2c)} = k\)
Here, \(x = k(b+c)(b+c-2a)\), \(y = k(c-a)(c+a-2b)\), and \(z = k(a-b)(a+b-2c)\).
To find \(x+y+z\), we sum the expressions for \(x\), \(y\), and \(z\):
\(x + y + z = k\left((b+c)(b+c-2a) + (c-a)(c+a-2b) + (a-b)(a+b-2c)\right)\)
Let's expand each term:
\((b+c)(b+c-2a) = b^2 + 2bc + c^2 - 2ab - 2ac\)
\((c-a)(c+a-2b) = c^2 - a^2 - 2bc + 2ab\)
\((a-b)(a+b-2c) = a^2 - b^2 - 2ac + 2bc\)
Summing these results:
\(b^2 + 2bc + c^2 - 2ab - 2ac + c^2 - a^2 - 2bc + 2ab + a^2 - b^2 - 2ac + 2bc\)
Combining like terms:
Observe that each term appears twice with opposite signs (e.g., \(2bc\) and \(-2bc\)), leading to a complete cancellation:
\((b^2-b^2) + (2bc-2bc) + (c^2-c^2) + (-a^2+a^2) + (-2ab+2ab) + (-2ac+2ac)\)
All terms cancel, leaving:
\(0\)
Thus, the expression inside the parentheses is zero; hence,
\(x+y+z = k \times 0 = 0\)
The value of \(x+y+z\) is 0.
Was this answer helpful?
0
0