The given expression is $\frac{1}{\sqrt{2-3x}}$.
We can rewrite this expression using negative exponents:
$\frac{1}{\sqrt{2-3x}} = (2-3x)^{-1/2}$
To use the binomial expansion $(1+y)^n$, we factor out 2 from the term $(2-3x)$:
$(2-3x)^{-1/2} = \left[2\left(1 - \frac{3}{2}x\right)\right]^{-1/2}$
$= 2^{-1/2} \left(1 - \frac{3}{2}x\right)^{-1/2}$
This is in the form $A(1+y)^n$, where $A = 2^{-1/2} = \frac{1}{\sqrt{2}}$, $y = -\frac{3}{2}x$, and $n = -\frac{1}{2}$.
The general formula for the $(r+1)^{th}$ term in the binomial expansion of $(1+y)^n$ is $T_{r+1} = \binom{n}{r}y^r$.
For the $5^{th}$ term, we set $r+1 = 5$, which implies $r = 4$.
So, the $5^{th}$ term of $\left(1 - \frac{3}{2}x\right)^{-1/2}$ is $T_5' = \binom{-1/2}{4} \left(-\frac{3}{2}x\right)^4$.
First, calculate the binomial coefficient $\binom{-1/2}{4}$:
$\binom{-1/2}{4} = \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)\left(-\frac{1}{2}-3\right)}{4 \times 3 \times 2 \times 1}$
$= \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\left(-\frac{7}{2}\right)}{24}$
$= \frac{\frac{1 \times 3 \times 5 \times 7}{16}}{24} = \frac{105/16}{24} = \frac{105}{16 \times 24} = \frac{105}{384}$
This fraction can be simplified by dividing numerator and denominator by 3:
$\frac{105}{384} = \frac{35}{128}$.
Next, calculate the term $\left(-\frac{3}{2}x\right)^4$:
$\left(-\frac{3}{2}x\right)^4 = \frac{(-3)^4 x^4}{2^4} = \frac{81x^4}{16}$.
Now, combine these to find $T_5'$:
$T_5' = \frac{35}{128} \times \frac{81x^4}{16} = \frac{35 \times 81}{128 \times 16} x^4 = \frac{2835}{2048} x^4$.
The $5^{th}$ term of the original expression $(2-3x)^{-1/2}$ is $T_5 = A \cdot T_5'$:
$T_5 = \frac{1}{\sqrt{2}} \times \frac{2835}{2048} x^4 = \frac{2835}{2048\sqrt{2}} x^4$.
Finally, substitute the given value $x = \frac{1}{2}$:
$x^4 = \left(\frac{1}{2}\right)^4 = \frac{1}{16}$.
$T_5 = \frac{2835}{2048\sqrt{2}} \times \frac{1}{16}$
$T_5 = \frac{2835}{2048 \times 16 \sqrt{2}}$
$T_5 = \frac{2835}{32768\sqrt{2}}$.
To match the format of the options, we can factor $2835 = 35 \times 81$:
$T_5 = \frac{35 \times 81}{32768\sqrt{2}}$.
Comparing this with the given options, specifically option (B) $\frac{35}{768\sqrt{2}}$, we notice a discrepancy in the denominators.
If our calculated result were to equal option (B), then $\frac{81}{32768}$ must be equal to $\frac{1}{768}$.
However, $81 \times 768 = 62208$ and $32768 \times 1 = 32768$. Since $62208 \neq 32768$, the exact calculated value does not numerically match option (B).
Assuming Option (B) is the intended correct answer as indicated:
The calculated numerical value of the 5th term is $\frac{2835}{32768\sqrt{2}}$.