Given that \( \frac{1}{q + r}, \frac{1}{r + p}, \frac{1}{p + q} \) are in A.P., we use the property of arithmetic progression:
\[
2 \times \frac{1}{r + p} = \frac{1}{q + r} + \frac{1}{p + q}
\]
Rearranging the equation:
\[
\frac{1}{r + p} - \frac{1}{q + r} = \frac{1}{p + q} - \frac{1}{r + p}
\]
Cross multiplying and simplifying:
\[
q^2 - p^2 = r^2 - q^2
\]
\[
\Rightarrow p^2, q^2, r^2 \text{ are in A.P.}
\]
Thus, the correct answer is \( \boxed{(b)} \).