The electric potential \( V \) at a point due to a point charge is given by the formula:
\( V = \frac{k \cdot q}{r} \)
where \( k = 9 \times 10^9 \, \text{Nm}^2/\text{C}^2 \) (Coulomb's constant), \( q \) is the charge, and \( r \) is the distance from the charge to the point of interest.
Given four charges \( q_1 = +1 \times 10^{-8} \, \text{C} \), \( q_2 = -2 \times 10^{-8} \, \text{C} \), \( q_3 = +3 \times 10^{-8} \, \text{C} \), \( q_4 = +2 \times 10^{-8} \, \text{C} \) at the corners of a square with side length 1 m, the distance from each charge to the center of the square is:
\( r = \frac{\text{diagonal}}{2} = \frac{\sqrt{2}}{2} \, \text{m} \)
The electric potential at the center \( V_c \) is the sum of potentials due to each charge:
\( V_c = V_1 + V_2 + V_3 + V_4 \)
Compute the potential from each charge:
- \( V_1 = \frac{k \cdot q_1}{r} = \frac{9 \times 10^9 \times 1 \times 10^{-8}}{\sqrt{2}/2} = \frac{18 \times 10}{\sqrt{2}} \)
- \( V_2 = \frac{k \cdot q_2}{r} = \frac{9 \times 10^9 \times (-2) \times 10^{-8}}{\sqrt{2}/2} = \frac{-36 \times 10}{\sqrt{2}} \)
- \( V_3 = \frac{k \cdot q_3}{r} = \frac{9 \times 10^9 \times 3 \times 10^{-8}}{\sqrt{2}/2} = \frac{54 \times 10}{\sqrt{2}} \)
- \( V_4 = \frac{k \cdot q_4}{r} = \frac{9 \times 10^9 \times 2 \times 10^{-8}}{\sqrt{2}/2} = \frac{36 \times 10}{\sqrt{2}} \)
Summing these potentials, we have:
\( V_c = \frac{18 \times 10 + (-36 \times 10) + 54 \times 10 + 36 \times 10}{\sqrt{2}} = \frac{72 \times 10}{\sqrt{2}} = 510 \, \text{V} \)
Therefore, the electric potential at the center of the square is \( 510 \) V.