Step 1: The function \( f(x) = x|x| \) can be written as: \[ f(x) = \left\{ \begin{array}{ll} x^2, & x \geq 0 \\ -x^2, & x < 0 \end{array} \right. \]
Step 2: Differentiating \( f(x) \) piecewise: For \( x > 0 \), \( f'(x) = 2x \). For \( x < 0 \), \( f'(x) = -2x \).
Step 3: Substitute \( x = -1 \) and \( x = 1 \): \[ f'(-1) = -2(-1) = 2, \quad f'(1) = 2(1) = 2. \]
Step 4: Therefore: \[ f'(-1) + f'(1) = 2 + 2 = 4. \]
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.