Question:

If $f (x) = x^2 + 4x - 5$ and $A = \begin{bmatrix}1&2\\ 4&-3\end{bmatrix} $ then f (A) is equal to

Updated On: Jul 6, 2022
  • $\begin{bmatrix} 0 & - 4 \\ 8 & 8 \end{bmatrix} $
  • $\begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix} $
  • $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} $
  • $\begin{bmatrix} 8 & 4 \\ 8 & 0 \end{bmatrix} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Given : $A = \begin{bmatrix}1&2\\ 4&-3\end{bmatrix} $ $\therefore A^{2} = A.A = \begin{bmatrix}1&2\\ 4&-3\end{bmatrix}\begin{bmatrix}1&2\\ 4&-3\end{bmatrix}$ $ = \begin{bmatrix}1+8&2-6\\ 4-12&8+9\end{bmatrix} = \begin{bmatrix}9&-4\\ -8&17\end{bmatrix}$ Now, $ f \left(x\right) = x^{2} + 4x - 5$ $ \therefore f \left(A\right) = A^{2} + 4A - 5$ $ = A^{2} + 4A - 5 I $ (I is a $2 \times 2$unit matrix) $ = \begin{bmatrix}9&-4\\ -8&17\end{bmatrix} + 4 \begin{bmatrix}1&2\\ 4&-3\end{bmatrix}- 5 \begin{bmatrix}1&0\\ 0&1\end{bmatrix} $ $ = \begin{bmatrix}9&-4\\ -8&17\end{bmatrix} + \begin{bmatrix}4&8\\ 16&-12\end{bmatrix}+ \begin{bmatrix}-5&0\\ 0&-5\end{bmatrix}$ $ = \begin{bmatrix}8&4\\ 8&0\end{bmatrix} $
Was this answer helpful?
0
0

Concepts Used:

Matrices

Matrix:

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.

The basic operations that can be performed on matrices are:

  1. Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
  2. Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
  3. Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication. 
  4. Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal. 
  5. Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.