If f(x) = sin-1 \((\frac{2x}{1+x^2})\), then f'\((\sqrt3)\) is\(\)
If \(f(x) = \sin^{-1}(\frac{2x}{1+x^2})\), then we need to find \(f'(\sqrt{3})\).
We recognize that the expression inside the \(\sin^{-1}\) can be written as \(2\tan \theta / (1+\tan^2 \theta)\), let \(x = \tan \theta\) so \(\theta = \arctan x\)
\(f(x) = \sin^{-1}(\frac{2 \tan \theta}{1+\tan^2 \theta})\)
\(f(x) = \sin^{-1}(\sin 2\theta)\)
\(f(x) = 2 \theta = 2 \arctan x\)
Now we find the derivative \(f'(x)\):
\(f'(x) = 2 \cdot \frac{1}{1+x^2} = \frac{2}{1+x^2}\)
Now we evaluate \(f'(\sqrt{3})\):
\(f'(\sqrt{3}) = \frac{2}{1+(\sqrt{3})^2} = \frac{2}{1+3} = \frac{2}{4} = \frac{1}{2}\)
Therefore, the correct option is (A) \(\frac{1}{2}\).
We have $ f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) $. We can rewrite $ f(x) = 2 \tan^{-1}(x) $.
Then, the derivative is:
$$ f'(x) = \frac{2}{1+x^2} $$
We want to find $ f'(\sqrt{3}) $:
$$ f'(\sqrt{3}) = \frac{2}{1+(\sqrt{3})^2} = \frac{2}{1+3} = \frac{2}{4} = \frac{1}{2} $$