To find \( f(2.5) \) where \( f(x) = \lfloor x \rfloor + \lfloor -x \rfloor \), let's evaluate each part of the function:
Step 1: Calculate \( \lfloor 2.5 \rfloor \)
The floor function \( \lfloor x \rfloor \) returns the greatest integer less than or equal to \( x \). Thus, \( \lfloor 2.5 \rfloor = 2 \).
Step 2: Calculate \( \lfloor -2.5 \rfloor \)
For \( \lfloor -x \rfloor \), we apply the floor function to \( -2.5 \). Since \( -2.5 \) is between \(-3\) and \(-2\), the greatest integer less than or equal to \(-2.5\) is \(-3\). Hence, \( \lfloor -2.5 \rfloor = -3 \).
Step 3: Compute \( f(2.5) \)
Substitute the results from the previous steps into the function:
\( f(2.5) = \lfloor 2.5 \rfloor + \lfloor -2.5 \rfloor = 2 + (-3) = -1 \).
Therefore, the value of \( f(2.5) \) is \(-1\).
Let \( f(x) = \log x \) and \[ g(x) = \frac{x^4 - 2x^3 + 3x^2 - 2x + 2}{2x^2 - 2x + 1} \] Then the domain of \( f \circ g \) is: