Question:

If \( f'(x) = \frac{x}{\sqrt{1 + x^2}} \) and \( f(0) = 0 \), then \( f(x) = \):

Show Hint

When integrating \( \frac{x}{\sqrt{1 + x^2}} \), use substitution to simplify the integral.
Updated On: Jan 6, 2026
  • \( \frac{2}{3}(1 + x^2)^{\frac{3}{2}} - 6(1 + x^2)^{1/2} \)
  • \( \frac{2}{3}(1 + x^2)^{\frac{5}{2}} \)
  • \( \frac{2}{3}(1 + x^2)^{\frac{3}{2}} \)
  • \( \frac{2}{3}(1 + x^2)^{\frac{1}{2}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Integrate to find \( f(x) \). Integrating \( f'(x) = \frac{x}{\sqrt{1 + x^2}} \), we use substitution to find the solution.
Step 2: Conclusion. Thus, the value of \( f(x) \) is \( \frac{2}{3}(1 + x^2)^{\frac{5}{2}} \).
Was this answer helpful?
0
0