>
Exams
>
Mathematics
>
Trigonometry
>
if f x frac x 1 x 2 frac x 1 x 2 2 cdots to infini
Question:
If \( f(x) = \frac{x}{1 + x^2} + \frac{x}{(1 + x^2)^2} + \cdots \) to infinity, then at \( x = 0, f(x) \)
Show Hint
Examine the behavior of the terms in an infinite series at specific values of \( x \) to determine if the series is continuous or differentiable.
VITEEE - 2021
VITEEE
Updated On:
Jan 14, 2026
has no limit
is discontinuous
is continuous but not differentiable
is differentiable
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
At \( x = 0 \), the function behaves discontinuously due to the powers of \( x^2 \). Therefore, the function is not continuous and is not differentiable.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometry
The number of 4-letter words, with or without meaning, which can be formed using the letters PQRPRSTUVP, is :
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Let \( y = y(x) \) be the solution of the differential equation \( x^2 dy + (4x^2 y + 2\sin x)dx = 0 \), \( x>0 \), \( y\left(\frac{\pi}{2}\right) = 0 \). Then \( \pi^4 y\left(\frac{\pi}{3}\right) \) is equal to :
JEE Main - 2026
Mathematics
Trigonometry
View Solution
If \[ k=\tan\!\left(\frac{\pi}{4}+\frac{1}{2}\cos^{-1}\!\left(\frac{2}{3}\right)\right) +\tan\!\left(\frac{1}{2}\sin^{-1}\!\left(\frac{2}{3}\right)\right), \] then the number of solutions of the equation \[ \sin^{-1}(kx-1)=\sin^{-1}x-\cos^{-1}x \] is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
If \[ \frac{\tan(A-B)}{\tan A}+\frac{\sin^2 C}{\sin^2 A}=1, \quad A,B,C\in\left(0,\frac{\pi}{2}\right), \] then:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Let \( \dfrac{\pi}{2} < \theta < \pi \) and \( \cot \theta = -\dfrac{1}{2\sqrt{2}} \). Then the value of \[ \sin\!\left(\frac{15\theta}{2}\right)(\cos 8\theta + \sin 8\theta) + \cos\!\left(\frac{15\theta}{2}\right)(\cos 8\theta - \sin 8\theta) \] is equal to
JEE Main - 2026
Mathematics
Trigonometry
View Solution
View More Questions
Questions Asked in VITEEE exam
Find the value of \( x \) in the following equation:
\[ \frac{2}{x} + \frac{3}{x + 1} = 1 \]
VITEEE - 2025
Algebra
View Solution
How many numbers between 0 and 9 look the same when observed in a mirror?
VITEEE - 2025
Odd one Out
View Solution
In a code language, 'TIGER' is written as 'JUISF'. How will 'EQUAL' be written in that language?
VITEEE - 2025
Odd one Out
View Solution
In a code language, 'TIGER' is written as 'JUISF'. How will 'EQUAL' be written in that language?
VITEEE - 2025
Data Interpretation
View Solution
TUV : VYB :: PRA : ?
VITEEE - 2025
Odd one Out
View Solution
View More Questions