Step 1: Interpret the given relation.
Given:
\[
f'(x)dx = f(x)
\]
This implies:
\[
d(f(x)) = f'(x)dx
\]
So the condition is actually:
\[
d(f(x)) = f'(x)dx
\]
and given statement indicates substitution possible.
Step 2: Evaluate the integral.
We want:
\[
\int \{f(x)\}^2 dx
\]
Using substitution \(u=f(x)\).
Then:
\[
du=f'(x)dx
\]
Given relation supports direct integration form, so:
\[
\int u\,du = \frac{u^2}{2}
\]
Thus:
\[
\int \{f(x)\}^2 dx = \frac{1}{2}\{f(x)\}^2
\]
Final Answer:
\[
\boxed{\frac{1}{2}\{f(x)\}^2}
\]