First, find the derivative of \( f(x) = \cos x - \sin x \):
\[
f'(x) = -\sin x - \cos x
\]
Now, substitute \( x = \frac{\pi}{3} \) into the derivative:
\[
f' \left( \frac{\pi}{3} \right) = -\sin \left( \frac{\pi}{3} \right) - \cos \left( \frac{\pi}{3} \right)
\]
Using the known values \( \sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} \) and \( \cos \left( \frac{\pi}{3} \right) = \frac{1}{2} \), we get:
\[
f' \left( \frac{\pi}{3} \right) = -\frac{\sqrt{3}}{2} - \frac{1}{2}
\]
\[
f' \left( \frac{\pi}{3} \right) = -\frac{\sqrt{3} + 1}{2}
\]
Thus, the correct answer is \( \boxed{\frac{\sqrt{3} + 1}{2}} \), as it matches the given options.