Question:

If f(x)=5cos3x3sin3xandg(x)=4sin3x+cos2x, f(x) = 5 \cos^3 x - 3 \sin^3 x \quad \text{and} \quad g(x) = 4 \sin^3 x + \cos^2 x, then the derivative of f(x) f(x) with respect to g(x) g(x) is:

Show Hint

To differentiate one function with respect to another, compute their derivatives separately and take the ratio f(x)g(x) \frac{f'(x)}{g'(x)} .
Updated On: Mar 24, 2025
  • 5cosx+26cosx1 \frac{5 \cos x + 2}{6 \cos x - 1}
  • (5cosx+2)6cosx1 \frac{- (5 \cos x + 2)}{6 \cos x - 1}
  • 15cosx612sinx+2 \frac{15 \cos x - 6}{12 \sin x + 2}
  • (15cosx+6)12sinx2 \frac{- (15 \cos x + 6)}{12 \sin x - 2}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation


Step 1: Compute f(x) f'(x)
Given: f(x)=5cos3x3sin2x. f(x) = 5\cos^3x - 3\sin^2x. Differentiating: f(x)=53cos2x(sinx)32sinxcosx. f'(x) = 5 \cdot 3\cos^2x(-\sin x) - 3 \cdot 2\sin x\cos x. =15cos2xsinx6sinxcosx. = -15\cos^2x\sin x - 6\sin x\cos x. Factoring: f(x)=sinx(15cos2x+6cosx). f'(x) = -\sin x(15\cos^2x + 6\cos x). Step 2: Compute g(x) g'(x)
Given: g(x)=4sin3x+cos2x. g(x) = 4\sin^3x + \cos^2x. Differentiating: g(x)=43sin2xcosx2cosxsinx. g'(x) = 4 \cdot 3\sin^2x\cos x - 2\cos x\sin x. =12sin2xcosx2cosxsinx. = 12\sin^2x\cos x - 2\cos x\sin x. Factoring: g(x)=cosx(12sin2x2). g'(x) = \cos x(12\sin^2x - 2). Step 3: Compute dfdg \frac{df}{dg}
dfdg=f(x)g(x)=sinx(15cos2x+6cosx)cosx(12sin2x2). \frac{df}{dg} = \frac{f'(x)}{g'(x)} = \frac{-\sin x(15\cos^2x + 6\cos x)}{\cos x(12\sin^2x - 2)}. Simplifying: =15cos2x+6cosx12sin2x2. = -\frac{15\cos^2x + 6\cos x}{12\sin^2x - 2}. Step 4: Conclusion
Thus, the final answer is: (15cosx+612sinx2). \boxed{-\left( \frac{15\cos x + 6}{12\sin x - 2} \right)}.
Was this answer helpful?
0
0

Top Questions on Differentiation

View More Questions