>
Exams
>
Mathematics
>
Differentiation
>
if f x 5 cos 3 x 3 sin 3 x quad text and quad g x
Question:
If
f
(
x
)
=
5
cos
3
x
−
3
sin
3
x
and
g
(
x
)
=
4
sin
3
x
+
cos
2
x
,
f(x) = 5 \cos^3 x - 3 \sin^3 x \quad \text{and} \quad g(x) = 4 \sin^3 x + \cos^2 x,
f
(
x
)
=
5
cos
3
x
−
3
sin
3
x
and
g
(
x
)
=
4
sin
3
x
+
cos
2
x
,
then the derivative of
f
(
x
)
f(x)
f
(
x
)
with respect to
g
(
x
)
g(x)
g
(
x
)
is:
Show Hint
To differentiate one function with respect to another, compute their derivatives separately and take the ratio
f
′
(
x
)
g
′
(
x
)
\frac{f'(x)}{g'(x)}
g
′
(
x
)
f
′
(
x
)
.
AP EAMCET - 2024
AP EAMCET
Updated On:
Mar 24, 2025
5
cos
x
+
2
6
cos
x
−
1
\frac{5 \cos x + 2}{6 \cos x - 1}
6
c
o
s
x
−
1
5
c
o
s
x
+
2
−
(
5
cos
x
+
2
)
6
cos
x
−
1
\frac{- (5 \cos x + 2)}{6 \cos x - 1}
6
c
o
s
x
−
1
−
(
5
c
o
s
x
+
2
)
15
cos
x
−
6
12
sin
x
+
2
\frac{15 \cos x - 6}{12 \sin x + 2}
12
s
i
n
x
+
2
15
c
o
s
x
−
6
−
(
15
cos
x
+
6
)
12
sin
x
−
2
\frac{- (15 \cos x + 6)}{12 \sin x - 2}
12
s
i
n
x
−
2
−
(
15
c
o
s
x
+
6
)
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
Step 1: Compute
f
′
(
x
)
f'(x)
f
′
(
x
)
Given:
f
(
x
)
=
5
cos
3
x
−
3
sin
2
x
.
f(x) = 5\cos^3x - 3\sin^2x.
f
(
x
)
=
5
cos
3
x
−
3
sin
2
x
.
Differentiating:
f
′
(
x
)
=
5
⋅
3
cos
2
x
(
−
sin
x
)
−
3
⋅
2
sin
x
cos
x
.
f'(x) = 5 \cdot 3\cos^2x(-\sin x) - 3 \cdot 2\sin x\cos x.
f
′
(
x
)
=
5
⋅
3
cos
2
x
(
−
sin
x
)
−
3
⋅
2
sin
x
cos
x
.
=
−
15
cos
2
x
sin
x
−
6
sin
x
cos
x
.
= -15\cos^2x\sin x - 6\sin x\cos x.
=
−
15
cos
2
x
sin
x
−
6
sin
x
cos
x
.
Factoring:
f
′
(
x
)
=
−
sin
x
(
15
cos
2
x
+
6
cos
x
)
.
f'(x) = -\sin x(15\cos^2x + 6\cos x).
f
′
(
x
)
=
−
sin
x
(
15
cos
2
x
+
6
cos
x
)
.
Step 2: Compute
g
′
(
x
)
g'(x)
g
′
(
x
)
Given:
g
(
x
)
=
4
sin
3
x
+
cos
2
x
.
g(x) = 4\sin^3x + \cos^2x.
g
(
x
)
=
4
sin
3
x
+
cos
2
x
.
Differentiating:
g
′
(
x
)
=
4
⋅
3
sin
2
x
cos
x
−
2
cos
x
sin
x
.
g'(x) = 4 \cdot 3\sin^2x\cos x - 2\cos x\sin x.
g
′
(
x
)
=
4
⋅
3
sin
2
x
cos
x
−
2
cos
x
sin
x
.
=
12
sin
2
x
cos
x
−
2
cos
x
sin
x
.
= 12\sin^2x\cos x - 2\cos x\sin x.
=
12
sin
2
x
cos
x
−
2
cos
x
sin
x
.
Factoring:
g
′
(
x
)
=
cos
x
(
12
sin
2
x
−
2
)
.
g'(x) = \cos x(12\sin^2x - 2).
g
′
(
x
)
=
cos
x
(
12
sin
2
x
−
2
)
.
Step 3: Compute
d
f
d
g
\frac{df}{dg}
d
g
df
d
f
d
g
=
f
′
(
x
)
g
′
(
x
)
=
−
sin
x
(
15
cos
2
x
+
6
cos
x
)
cos
x
(
12
sin
2
x
−
2
)
.
\frac{df}{dg} = \frac{f'(x)}{g'(x)} = \frac{-\sin x(15\cos^2x + 6\cos x)}{\cos x(12\sin^2x - 2)}.
d
g
df
=
g
′
(
x
)
f
′
(
x
)
=
cos
x
(
12
sin
2
x
−
2
)
−
sin
x
(
15
cos
2
x
+
6
cos
x
)
.
Simplifying:
=
−
15
cos
2
x
+
6
cos
x
12
sin
2
x
−
2
.
= -\frac{15\cos^2x + 6\cos x}{12\sin^2x - 2}.
=
−
12
sin
2
x
−
2
15
cos
2
x
+
6
cos
x
.
Step 4: Conclusion
Thus, the final answer is:
−
(
15
cos
x
+
6
12
sin
x
−
2
)
.
\boxed{-\left( \frac{15\cos x + 6}{12\sin x - 2} \right)}.
−
(
12
sin
x
−
2
15
cos
x
+
6
)
.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Differentiation
Let
L
1
:
x
−
1
3
=
y
4
=
z
5
L_1 : \frac{x - 1}{3} = \frac{y}{4} = \frac{z}{5}
L
1
:
3
x
−
1
=
4
y
=
5
z
and
L
2
:
x
−
p
2
=
y
3
=
z
4
L_2 : \frac{x - p}{2} = \frac{y}{3} = \frac{z}{4}
L
2
:
2
x
−
p
=
3
y
=
4
z
. If the shortest distance between
L
1
L_1
L
1
and
L
2
L_2
L
2
is
1
6
\frac{1}{\sqrt{6}}
6
1
, then the possible value of
p
p
p
is:
JEE Main - 2025
Mathematics
Differentiation
View Solution
A small town is analyzing the pattern of a new street light installation. The lights are set up such that the intensity of light at any point
x
x
x
metres from the start of the street can be modeled by:
f
(
x
)
=
e
x
sin
x
f(x) = e^x \sin x
f
(
x
)
=
e
x
sin
x
where
x
x
x
is in metres.Based on this, answer the following:
CBSE CLASS XII - 2025
Mathematics
Differentiation
View Solution
If
∫
a
b
x
3
d
x
=
0
\int_a^b x^3 dx = 0
∫
a
b
x
3
d
x
=
0
and
∫
a
b
x
2
d
x
=
2
3
\int_a^b x^2 dx = \frac{2}{3}
∫
a
b
x
2
d
x
=
3
2
, then find the values of
a
a
a
and
b
b
b
.
CBSE CLASS XII - 2025
Mathematics
Differentiation
View Solution
If
x
1
+
y
+
y
1
+
x
=
0
x\sqrt{1+y} + y\sqrt{1+x} = 0
x
1
+
y
+
y
1
+
x
=
0
, for
−
1
<
x
<
1
,
x
≠
y
-1<x<1, x \neq y
−
1
<
x
<
1
,
x
=
y
, then prove that
d
y
d
x
=
−
1
(
1
+
x
)
2
.
\frac{dy}{dx} = \frac{-1}{(1 + x)^2}.
d
x
d
y
=
(
1
+
x
)
2
−
1
.
CBSE CLASS XII - 2025
Mathematics
Differentiation
View Solution
If
y
=
log
(
x
+
1
x
)
2
y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^2
y
=
lo
g
(
x
+
x
1
)
2
, then show that
x
(
x
+
1
)
2
y
2
+
(
x
+
1
)
2
y
1
=
2
x(x + 1)^2 y_2 + (x + 1)^2 y_1 = 2
x
(
x
+
1
)
2
y
2
+
(
x
+
1
)
2
y
1
=
2
.
CBSE CLASS XII - 2025
Mathematics
Differentiation
View Solution
View More Questions
Questions Asked in AP EAMCET exam
Consider the tetrahedron with the vertices
A
(
3
,
2
,
4
)
A(3,2,4)
A
(
3
,
2
,
4
)
,
B
(
x
1
,
y
1
,
0
)
B(x_1,y_1,0)
B
(
x
1
,
y
1
,
0
)
,
C
(
x
2
,
y
2
,
0
)
C(x_2,y_2,0)
C
(
x
2
,
y
2
,
0
)
, and
D
(
x
3
,
y
3
,
0
)
D(x_3,y_3,0)
D
(
x
3
,
y
3
,
0
)
. If the triangle
B
C
D
BCD
BC
D
is formed by the lines
y
=
x
y = x
y
=
x
,
x
+
y
=
6
x + y = 6
x
+
y
=
6
, and
y
=
1
y = 1
y
=
1
, then the centroid of the tetrahedron is:
AP EAMCET - 2024
Family of Lines
View Solution
If all the letters of the word MASTER are permuted in all possible ways and words (with or without meaning) thus formed are arranged in dictionary order, then the rank of the word MASTER is:
AP EAMCET - 2024
permutations and combinations
View Solution
If
x
2
+
5
a
x
+
6
=
0
x^2 + 5ax + 6 = 0
x
2
+
5
a
x
+
6
=
0
and
x
2
+
3
a
x
+
2
=
0
x^2 + 3ax + 2 = 0
x
2
+
3
a
x
+
2
=
0
have a common root, then that common root is:
AP EAMCET - 2024
Functions
View Solution
At 293 K, methane gas was passed into 1 L of water. The partial pressure of methane is 1 bar. The number of moles of methane dissolved in 1 L water is
(K
H
_H
H
of methane = 0.4 kbar).
AP EAMCET - 2024
Mole concept and Molar Masses
View Solution
If A and B are the centres of similitude with respect to the circles
x
2
+
y
2
−
14
x
+
6
y
+
33
=
0
x^2 + y^2 - 14x + 6y + 33 = 0
x
2
+
y
2
−
14
x
+
6
y
+
33
=
0
and
x
2
+
y
2
+
30
x
−
2
y
+
1
=
0
x^2 + y^2 + 30x - 2y + 1 = 0
x
2
+
y
2
+
30
x
−
2
y
+
1
=
0
, then midpoint of
A
B
AB
A
B
is:
AP EAMCET - 2024
Circles
View Solution
View More Questions