It is given that f(x)=(4x+3)/(6x-4),x≠2/3
(fof)(x)=f(f(x))=f[(4x+3)/(6x-4)]
=4(4x+3)/(6x-4)+3/6(4x+3)/(6x-4)-4
=16x+12+18x-12/24x+18-24x+16
=34x/35
=x.
Therefore,fof(x)=x,for all x≠2/3.
⇒fof=I.
Hence, the given function f is invertible and the inverse of f is f itself.
LIST I | LIST II | ||
A. | Range of y=cosec-1x | I. | R-(-1, 1) |
B. | Domain of sec-1x | II. | (0, π) |
C. | Domain of sin-1x | III. | [-1, 1] |
D. | Range of y=cot-1x | IV. | \([\frac{-π}{2},\frac{π}{2}]\)-{0} |
What is the Planning Process?