Step 1: Assume a quadratic form for \(f\).
Since the outputs are quartic and sextic with only even/odd middle terms, try \(f(u)=au^{2}+bu+c\).
Then
\[
f(x^{2}-1)=a(x^{2}-1)^{2}+b(x^{2}-1)+c
= ax^{4}+(-2a+b)x^{2}+(a-b+c).
\]
Match with \(x^{4}-7x^{2}+k_{1}\) \(\Rightarrow\)
\[
a=1,\quad -2a+b=-7 \Rightarrow b=-5,\quad a-b+c=k_{1}\Rightarrow c=k_{1}-6.
\]
Step 2: Use the second condition.
\[
f(x^{3}-2)=a(x^{3}-2)^{2}+b(x^{3}-2)+c
= ax^{6}+(-4a+b)x^{3}+(4a-2b+c).
\]
With \(a=1,\ b=-5,\ c=k_{1}-6\),
\[
x^{6}\text{-coeff}=1\ \checkmark,\quad x^{3}\text{-coeff}=-4-5=-9\ \checkmark,
\]
\[
\text{constant}=4-2(-5)+(k_{1}-6)=14+k_{1}-6=8+k_{1}.
\]
Hence \(k_{2}=k_{1}+8 \Rightarrow k_{2}-k_{1}=\boxed{8}\).