Question:

If $\vec{F}$ is the force acting on a particle having position vector $\vec{r}$ and $\vec{\tau}$ be the torque of this force about the origin, then

Updated On: May 25, 2022
  • $\vec{r}\cdot \vec{\tau} > 0 $ and $ \vec{F}\cdot \vec{\tau} < 0$
  • $\vec{r}\cdot \vec{\tau} = 0$ and $\vec{F}\cdot \vec{\tau} = 0$
  • $\vec{r}\cdot \vec{\tau} = 0$ and $ \vec{F}\cdot \vec{\tau} \ne 0$
  • $\vec{r}\cdot \vec{\tau} \ne 0 $ and $ \vec{F}\cdot \vec{\tau} = 0$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

$\vec{\tau}=\vec{ r } \times \vec{ F }$
$\vec{\tau}$ is perpendicular to $\vec{ r }$ and $\vec{ F }$.
Was this answer helpful?
0
0

Top Questions on System of Particles & Rotational Motion

View More Questions