We are given:
\[
f(a) = \log \left| \frac{1 - a}{1 + a} \right|, \quad a \neq -1, 1
\]
We are required to find values of \( a \) such that:
\[
f\left( \frac{2a}{1 + a^2} \right)>0
\]
Let \( x = \frac{2a}{1 + a^2} \). Then:
\[
f(x) = \log \left| \frac{1 - x}{1 + x} \right|>0
\Rightarrow \left| \frac{1 - x}{1 + x} \right|>1
\]
This implies:
\[
\left| \frac{1 - x}{1 + x} \right|>1 \Rightarrow \left| \frac{1 - x}{1 + x} \right|^2>1
\Rightarrow \left( \frac{1 - x}{1 + x} \right)^2>1
\Rightarrow \frac{(1 - x)^2}{(1 + x)^2}>1
\]
\[
\Rightarrow (1 - x)^2>(1 + x)^2
\Rightarrow 1 - 2x + x^2>1 + 2x + x^2
\Rightarrow -2x>2x \Rightarrow -4x>0 \Rightarrow x<0
\]
So, we want:
\[
\frac{2a}{1 + a^2}<0
\]
Now, observe the sign of \( \frac{2a}{1 + a^2} \):
- The denominator \( 1 + a^2>0 \) for all real \( a \)
- Hence, \( \frac{2a}{1 + a^2}<0 \) when \( 2a<0 \Rightarrow a<0 \)
Also, we are given \( a \neq \pm 1 \)
\[
\Rightarrow \boxed{a \in (-\infty, 0) \setminus \{-1\}}
\]