Step 1: Understand the given function and domain.
Given:
\[
f(a) = \log \left| \frac{1 - a}{1 + a} \right|,
\]
with \( a \neq \pm 1 \) to avoid division by zero.
Step 2: Analyze the inequality \( f\left( \frac{2a}{1 + a^2} \right) > 0 \).
Substitute \( x = \frac{2a}{1 + a^2} \) into the function:
\[
f(x) = \log \left| \frac{1 - x}{1 + x} \right| > 0.
\]
Since logarithm is positive if and only if the argument is greater than 1:
\[
\left| \frac{1 - x}{1 + x} \right| > 1.
\]
Step 3: Solve the inequality for \( x \).
Consider two cases due to absolute value:
1) \(\frac{1 - x}{1 + x} > 1\),
2) \(\frac{1 - x}{1 + x} < -1\).
Case 1:
\[
\frac{1 - x}{1 + x} > 1 \implies 1 - x > 1 + x \implies -x > x \implies -2x > 0 \implies x < 0.
\]
But also denominator \( 1 + x \neq 0 \implies x \neq -1 \).
Case 2:
\[
\frac{1 - x}{1 + x} < -1 \implies 1 - x < - (1 + x) \implies 1 - x < -1 - x \implies 1 < -1,
\]
which is false.
So only Case 1 holds with \( x < 0 \) and \( x \neq -1 \).
Step 4: Recall \( x = \frac{2a}{1 + a^2} \) and analyze its range.
Since \( 1 + a^2 > 0 \) for all real \( a \),
the sign of \( x \) depends on the numerator \( 2a \):
\[
x < 0 \iff \frac{2a}{1 + a^2} < 0 \iff a < 0.
\]
Also, check if \( x = -1 \) is possible:
\[
\frac{2a}{1 + a^2} = -1 \implies 2a = -1 - a^2 \implies a^2 + 2a + 1 = 0 \implies (a + 1)^2 = 0 \implies a = -1.
\]
Since \( a = -1 \) is excluded (denominator zero in original function), remove it.
Step 5: Final solution set.
The set of all \( a \) such that:
\[
a < 0 \quad \text{and} \quad a \neq -1,
\]
which is:
\[
(-\infty, 0) - \{ -1 \}.
\]