Step 1: Check monotonicity on \([2,3]\).
\[ f(x)=x^3+3x-2 \]
Differentiate:
\[ f'(x)=3x^2+3=3(x^2+1) \]
Since \(x^2+1>0\) for all real \(x\),
\[ f'(x)>0 \;\Rightarrow\; f(x)\text{ is strictly increasing on }[2,3] \]
Step 2: Find minimum and maximum values.
Minimum at \(x=2\):
\[ f(2)=2^3+3(2)-2=8+6-2=12 \]
Maximum at \(x=3\):
\[ f(3)=3^3+3(3)-2=27+9-2=34 \]
Step 3: Write the range.
\[ \text{Range}=[12,34] \]
Final Answer:
\[ \boxed{[12,34]} \]
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to: