Step 1: Understanding the Chain Rule Given the function: \[ y = f(f(f(f(f(x))))) \] To differentiate this function, we use the Chain Rule, which states: \[ \frac{dy}{dx} = f'(f(f(f(f(x))))) \cdot f'(f(f(f(x)))) \cdot f'(f(f(x))) \cdot f'(f(x)) \cdot f'(x) \]
Step 2: Evaluating the Function at \( x = 0 \) Since \( f(0) = 0 \), we can substitute: \[ y = f(f(f(f(f(0))))) = f(f(f(f(0)))) = f(f(f(0))) = f(f(0)) = f(0) = 0. \] Therefore, all occurrences of \( f(x) \) simplify to \( f(0) \), so: \[ \frac{dy}{dx} = f'(0) \cdot f'(0) \cdot f'(0) \cdot f'(0) \cdot f'(0) \]
Step 3: Computing the Final Derivative Value Given that \( f'(0) = 3 \), we substitute: \[ \frac{dy}{dx} = 3 \times 3 \times 3 \times 3 \times 3 \] \[ = 3^5 = 243 \]
Final Answer: \[ \frac{dy}{dx} = 243 \] Thus, the correct option is: Option (4): 243
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?