To find the values of a and b, we can compare the given integral expression with the expression
\(a \log |1 + x^2| + b \tan^{-1}(x) + \frac{1}{5} \log |x + 2| + c\)
Comparing the integrand of the given integral with the expression
\(a \log |1 + x^2| + b \tan^{-1}(x) + \frac{1}{5} \log |x + 2| + c\),
we can see that:
\(a = -\frac{1}{10} \quad \text{and} \quad b = \frac{2}{5}\)
Therefore, option (A) \(a = -\frac{1}{10} \quad \text{and} \quad b = \frac{2}{5}\) is the correct answer.
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :