Step 1: Recognize standard integral form.
\[
\int \frac{dt}{t\sqrt{t^2-1}} = \sec^{-1}(t)+C
\]
(for \(t\ge 1\)).
Step 2: Apply limits.
\[
\int_{1}^{x}\frac{dt}{t\sqrt{t^2-1}}
=
\sec^{-1}(x)-\sec^{-1}(1)
\]
Step 3: Evaluate \(\sec^{-1}(1)\).
\[
\sec^{-1}(1)=0
\]
So:
\[
\sec^{-1}(x)=\frac{\pi}{6}
\]
Step 4: Convert to \(\sec\).
\[
x=\sec\left(\frac{\pi}{6}\right)
=\frac{1}{\cos\left(\frac{\pi}{6}\right)}
=\frac{1}{\frac{\sqrt{3}}{2}}
=\frac{2}{\sqrt{3}}
\]
Final Answer:
\[
\boxed{\frac{2}{\sqrt{3}}}
\]