Question:

If $\Delta H^\circ$ and $\Delta S^\circ$ for the reaction $N_2O_4(g) \rightarrow 2NO_2(g)$ is $57.24\ \text{kJ}$ and $175.8\ \text{J K}^{-1}\text{mol}^{-1}$ respectively, what is the value of $\Delta G^\circ$ for this reaction at $298\ \text{K}$?

Show Hint

Always convert entropy into kJ before substituting values in the Gibbs free energy equation to avoid calculation errors.
Updated On: Feb 4, 2026
  • $57.24\ \text{kJ}$
  • $-17.58\ \text{kJ}$
  • $-4.85\ \text{kJ}$
  • $4.85\ \text{kJ}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Write the Gibbs free energy relation.
The Gibbs free energy change is calculated using the formula:
\[ \Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \]
Step 2: Convert entropy into consistent units.
Given $\Delta S^\circ = 175.8\ \text{J K}^{-1}\text{mol}^{-1}$
Convert into kJ:
\[ \Delta S^\circ = 0.1758\ \text{kJ K}^{-1}\text{mol}^{-1} \]
Step 3: Substitute the values.
\[ \Delta G^\circ = 57.24 - (298 \times 0.1758) \]
\[ \Delta G^\circ = 57.24 - 52.39 \]
Step 4: Final calculation.
\[ \Delta G^\circ = 4.85\ \text{kJ} \]
Step 5: Conclusion.
The Gibbs free energy change for the reaction at $298\ \text{K}$ is $4.85\ \text{kJ}$.
Was this answer helpful?
0
0