If dataset $A=\{1,2,3,\ldots,19\}$ and dataset $B=\{ax+b;\,x\in A\}$.
If mean of $B$ is $30$ and variance of $B$ is $750$, then sum of possible values of $b$ is
Show Hint
Variance is unaffected by addition of constants but is multiplied by the square of the scaling factor.
Step 1: Mean and variance of dataset $A$.
Dataset $A=\{1,2,3,\ldots,19\}$
Mean of first $n$ natural numbers is
\[
\bar{x}=\frac{1+19}{2}=10
\]
Variance of $\{1,2,\ldots,n\}$ is
\[
\sigma^2=\frac{n^2-1}{12}
\]
\[
\sigma^2=\frac{19^2-1}{12}=30
\]
Step 2: Mean of dataset $B$.
Given $B=ax+b$
\[
\text{Mean of }B=a(10)+b=30 \Rightarrow 10a+b=30 \quad (1)
\]
Step 3: Variance of dataset $B$.
Variance scales as
\[
\sigma_B^2=a^2\sigma_A^2
\]
\[
750=a^2\times30
\]
\[
a^2=25 \Rightarrow a=5 \text{ or } a=-5
\]
Step 4: Find corresponding values of $b$.
From equation (1):
If $a=5$,
\[
b=30-50=-20
\]
If $a=-5$,
\[
b=30+50=80
\]
Step 5: Final calculation.
\[
\text{Sum of possible values of }b=-20+80=60
\]
Final conclusion.
The required sum is 60.