Step 1: Recall definition of diagonal matrix.
A diagonal matrix has nonzero elements only on the diagonal:
\[
D=\text{diag}(d_1,d_2,\ldots,d_n)
\]
Step 2: Condition for inverse.
A diagonal matrix is invertible iff all diagonal entries are nonzero.
Given \(d_i\neq 0\), so inverse exists.
Step 3: Inverse of diagonal matrix.
To get \(D^{-1}\), each diagonal element becomes its reciprocal:
\[
D^{-1}=\text{diag}\left(\frac{1}{d_1},\frac{1}{d_2},\ldots,\frac{1}{d_n}\right)
\]
Step 4: Verification.
\[
DD^{-1}=\text{diag}(d_1\cdot d_1^{-1},\ldots,d_n\cdot d_n^{-1})=I
\]
Final Answer:
\[
\boxed{\text{diag}(d_1^{-1},d_2^{-1},\ldots,d_n^{-1})}
\]