We are given the expression for \( \cos \theta \). Using the half-angle identity for \( \tan^2 \left( \frac{\theta}{2} \right) \), we apply the formula:
\[
\tan^2 \left( \frac{\theta}{2} \right) = \frac{1 - \cos \theta}{1 + \cos \theta}
\]
Substituting \( \cos \theta = \frac{2 \cos \alpha + 1}{2 + \cos \alpha} \) into this identity, we simplify and find that:
\[
\tan^2 \left( \frac{\theta}{2} \right) = \frac{1}{3} \tan^2 \left( \frac{\alpha}{2} \right)
\]
Thus, the correct answer is \( \frac{1}{3} \tan^2 \left( \frac{\alpha}{2} \right) \).