Question:

If \(\begin{bmatrix} 4x & 5x-7 \\[0.3em] 4x & 2x+y\end{bmatrix}\)=\(\begin{bmatrix} x+6 & y \\[0.3em] 7y-13 & 7\end{bmatrix}\) then the value of 2x + y is:

Updated On: May 11, 2025
  • 8
  • 7
  • 9
  • 6
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To solve for \(2x + y\), we equate the corresponding elements of the given matrices:
\(\begin{bmatrix} 4x & 5x-7 \\ 4x & 2x+y\end{bmatrix}=\begin{bmatrix} x+6 & y \\ 7y-13 & 7\end{bmatrix}\)
  1. For the first element:
    \(4x = x + 6\)
    Solve for \(x\):
    \[\begin{align*} 4x & = x + 6 \\ 4x - x & = 6 \\ 3x & = 6 \\ x & = 2 \end{align*}\]
  2. For the second element:
    \(5x - 7 = y\)
    Substitute \(x = 2\):
    \[\begin{align*} 5(2) - 7 & = y \\ 10 - 7 & = y \\ y & = 3 \end{align*}\]
  3. Confirming from the third element:
    \(4x = 7y - 13\)
    Substitute \(x = 2\) and check with \(y = 3\):
    \[\begin{align*} 4(2) & = 7(3) - 13 \\ 8 & = 21 - 13 \\ 8 & = 8 \quad \text{True} \end{align*}\]
  4. Finally, for the fourth element:
    \(2x + y = 7\)
  5. Calculate \(2x + y\) with \(x = 2\) and \(y = 3\):
    \[\begin{align*} 2(2) + 3 & = 7 \\ 4 + 3 & = 7 \end{align*}\]
Thus, the value of \(2x + y\) is 7.
Was this answer helpful?
0
0