To solve for \(2x + y\), we equate the corresponding elements of the given matrices:
\(\begin{bmatrix} 4x & 5x-7 \\ 4x & 2x+y\end{bmatrix}=\begin{bmatrix} x+6 & y \\ 7y-13 & 7\end{bmatrix}\)
- For the first element:
\(4x = x + 6\)
Solve for \(x\):
\[\begin{align*} 4x & = x + 6 \\ 4x - x & = 6 \\ 3x & = 6 \\ x & = 2 \end{align*}\] - For the second element:
\(5x - 7 = y\)
Substitute \(x = 2\):
\[\begin{align*} 5(2) - 7 & = y \\ 10 - 7 & = y \\ y & = 3 \end{align*}\] - Confirming from the third element:
\(4x = 7y - 13\)
Substitute \(x = 2\) and check with \(y = 3\):
\[\begin{align*} 4(2) & = 7(3) - 13 \\ 8 & = 21 - 13 \\ 8 & = 8 \quad \text{True} \end{align*}\] - Finally, for the fourth element:
\(2x + y = 7\) - Calculate \(2x + y\) with \(x = 2\) and \(y = 3\):
\[\begin{align*} 2(2) + 3 & = 7 \\ 4 + 3 & = 7 \end{align*}\]
Thus, the value of \(2x + y\) is 7.