Let the given matrix be \(A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\ \frac{1-i}{\sqrt{3}} & \frac{K}{\sqrt{3}} \end{bmatrix}\).
For \(A\) to be unitary, \(AA^\dagger = I\), where \(A^\dagger\) is the conjugate transpose of \(A\).
The conjugate transpose of \(A\) is:
\(A^\dagger = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\ \frac{1-i}{\sqrt{3}} & \frac{\bar{K}}{\sqrt{3}} \end{bmatrix}\).
Now calculate \(AA^\dagger\):
\(AA^\dagger = \frac{1}{3} \begin{bmatrix} 1 & 1+i \\ 1-i & K \end{bmatrix} \begin{bmatrix} 1 & 1+i \\ 1-i & \bar{K} \end{bmatrix}\)
\(AA^\dagger = \frac{1}{3} \begin{bmatrix} 1+(1+i)(1-i) & (1+i) + (1+i)\bar{K} \\ (1-i) + K(1-i) & (1-i)(1+i) + K\bar{K} \end{bmatrix}\)
\(AA^\dagger = \frac{1}{3} \begin{bmatrix} 1+2 & (1+i)(1+\bar{K}) \\ (1-i)(1+K) & 2+|K|^2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & (1+i)(1+\bar{K}) \\ (1-i)(1+K) & 2+|K|^2 \end{bmatrix}\).
For \(AA^\dagger = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\):
From element (1,1): \(\frac{1}{3}(3) = 1\), which is correct.
From element (1,2): \(\frac{1}{3}(1+i)(1+\bar{K}) = 0 \Rightarrow (1+i)(1+\bar{K}) = 0\). Since \(1+i \neq 0\), then \(1+\bar{K}=0 \Rightarrow \bar{K}=-1 \Rightarrow K=-1\).
From element (2,1): \(\frac{1}{3}(1-i)(1+K) = 0 \Rightarrow (1-i)(1+K) = 0\). Since \(1-i \neq 0\), then \(1+K=0 \Rightarrow K=-1\).
From element (2,2): \(\frac{1}{3}(2+|K|^2) = 1 \Rightarrow 2+|K|^2=3 \Rightarrow |K|^2=1\).
If \(K=-1\), then \(|K|^2 = |-1|^2 = 1\), which is satisfied.
The only possible value for \(K\) is \(-1\). The sum of all possible values of \(K\) is \(-1\).
Final Answer: \[ \boxed{\text{--1}} \]
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to: