If area of triangle is 35 square units with vertices(2,−6), (5,4),and (k,4).Then k is
12
-2
-12,-2
12,-2
The area of the triangle with vertices (2, −6), (5, 4), and (k, 4) is given by the relation,
\(\triangle\)=\(\frac{1}{2}\)\(\begin{vmatrix}2&-6&1\\5&4&1\\k&4&1\end{vmatrix}\)
=\(\frac{1}{2}\)[2(4-4)+6(5-k)+1(20-4k)]
=\(\frac{1}{2}\)[30-6k+20-4k]
=\(\frac{1}{2}\)[50-10k]
=25-5k
It is given that the area of the triangle is ±35.
Therefore, we have:
\(\Rightarrow\) 25-5k=±35
\(\Rightarrow\) 5(5-k)=±35
\(\Rightarrow\) 5-k=±7
When 5 − k = −7, k = 5 + 7 = 12.
When 5 − k = 7, k = 5 − 7 = −2.
Hence, k = 12, −2.
The correct answer is D.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to