If \(\alpha\) be a root of the equation \(4x^2+2x-1=0\), then the other root is
Show Hint
For any quadratic:
\[
\text{Other root} = \left(-\frac{b}{a}\right)-\text{given root}
\]
Always use the sum of roots relation to express one root in terms of the other.
Step 1: For a quadratic equation:
\[
ax^2+bx+c=0
\]
If the roots are \(\alpha\) and \(\beta\), then:
\[
\alpha+\beta=-\frac{b}{a}, \qquad \alpha\beta=\frac{c}{a}
\]
Step 2: Given equation:
\[
4x^2+2x-1=0
\]
Here,
\[
a=4,\quad b=2,\quad c=-1
\]
Step 3: Sum of roots:
\[
\alpha+\beta=-\frac{2}{4}=-\frac{1}{2}
\]
Step 4: Express the other root \(\beta\) in terms of \(\alpha\):
\[
\beta=-\frac{1}{2}-\alpha
\]
Step 5: Rewrite \(\beta\):
\[
\beta=-\frac{1+2\alpha}{2}=-2\alpha-1 \quad (\text{equivalent form})
\]
Step 6: Hence, the other root is:
\[
\boxed{-2\alpha-1}
\]